• 196 Topics
  • 185 Replies

196 Topics

Nutanixの回復力 パート9 自己修復

本記事は2018年6月20日にJosh Odgers氏が投稿した記事の日本語版です。原文はこちら。本シリーズの索引はこちら。 Nutanixには、いくつもの非常に重要でユニークな自己修復機能があります。これらによって従来からのSAN/NAS装置だけでなく、他のHCI製品とも差別化されています。 Nutanixは、SSD/HDD/NVMeデバイスの損失やノードの障害を完全に自動で自己修復するだけでなく、ユーザーの介入なしに管理スタック(PRISM)を完全に復旧させることができます。 まず最初に、デバイスやノードの障害からデータを自己修復する方法について説明します。 従来のデュアルコントローラーのSANと、平均的*なサイズの8ノードのNutanixクラスターを単純に比較してみましょう。 *平均値は、全世界の顧客数を販売台数で割って算出しています。 1台のストレージコントローラが故障した場合、SAN/NASでは回復力が失われます。ベンダーがコンポーネントを交換し、回復力(多くの場合は性能劣化も)を取り戻すまでは、SLA(サービスレベルアグリーメント)を守るために奔走しなければなりません。 Nutanixと比較すると、8台のストレージコントローラのうち1台(12.5%)だけがオフラインになり、7台がワークロードへのサービスを継続し、回復力を自動的に取り戻すことができます(パート1で示したように、通常は分単位で回復します)。以前、「ハードウェアサポート契約と24時間365日のオンサイトが不要な理由」というブログで、このコンセプトを詳しく紹介しました。簡単に言うと、プラットフォームの回復力を取り戻すために、新しい交換部品の到着や、さらに悪いことに人手に依存している場合、ハードウェアの交換やマニュアルでの作業なしに完全な回復力を持つ状態に自己回復できるプラットフォームに比べて、ダウンタイムやデータロスのリスクは飛躍的に高くなります。 「もっと小さな(Nutanixの)クラスターではどうか」と反論する人(あるいは競合他社)もいるかもしれません。よくぞ聞いてくださいました。4ノードのクラスターであっても、ノード障害が発生すると、ハードウェアの交換やマニュアルでの作業なしに、完全に自己回復して回復力のある3ノードのクラスターになります。 Nutanix環境で、別のノード障害が発生しても

Nutanixの回復力–パート3 – RF3でのノード障害時のリビルドのパフォーマンス

本記事は2021年6月5日にJosh Odgers氏が投稿した記事の翻訳版です。原文はこちら。本シリーズの索引はこちら。 パート1では、Nutanix AOSが分散ストレージファブリック(ADSF)により、ノード障害からレジリエンシーファクター2(RF2)の状態に高速かつ効率的にリビルドする機能について説明しましたが、パート2では、ストレージコンテナをRF2からRF3に変換して耐障害性をさらに向上させる方法と、そのプロセスがどれだけ高速に完了するかを紹介しました。(今回も)パート2と同様に、12ノードのクラスタを使用しており、ノードごとのディスク使用量の内訳は以下の通りです。  今回障害をシミュレートするノードのディスク使用量は5TBで、パート1のノード障害テストでの容量とほぼ同じです。なお、クラスタが12ノードになったことで、パート1と比べて(パート1では16ノードを利用)読み書きするコントローラが少なくなっています。次に、ノードのIPMインターフェイス(IPMI)にアクセスし、「Power Off – Immediate(即時の電源オフ)」の操作を実行してノード障害をシミュレートしました。以下は、ノード障害時のリビルドが約30分で完了し、5TBのデータの再保護が完了した際のストレージプールのスループットを示しています。  パッと見、5年以上前のハードウェアで5TBのデータの再保護が約30分で完了したことは、SANや他のHCI製品と比較しても非常に素晴らしいことですが、(Nutanixのリビルドは)もっと速くなるはずだと感じたので、少し調べてみました。その結果、ノード障害をシミュレートした時点でクラスタ(を構成する各ノード上のデータ量)のバランスが崩れており、(障害状態をシミュレートしたノードに比べて)他のノードにデータがほとんどないため、通常の状況のようにリビルドに貢献できなかったことがわかりました(リビルド時の読み取りの観点から)。クラスタがアンバランスな状態になっていたのは、(ここまでで)ノード障害のシミュレーションを頻繁に繰り返し行っており、ノード障害のシミュレーションを行う前に、クラスタにノードを追加した後にディスクバランシングが完了するのを待たなかったためです。通常、ベンダーは最適ではないパフォーマンス結果を掲載することはありませんが、私は透明性が重要

Nutanix AOS vs vSAN/VxRAIL 大規模クラスタ & vSAN 7U1のデータ整合性

本記事は2021年2月5日にJosh Odgers氏が投稿した記事の翻訳版です。原文はこちら。本シリーズの索引はこちら。 このシリーズでは、Nutanix AOSが、3ノードクラスタを含むResiliency Factor 2(RF2:データのコピーを2つ保持する設定)を使用している場合に、メンテナンスモード、リブート、障害シナリオにおいて、仮想マシンの完全な可用性とデータの整合性を維持することを学びました。 また、Nutanix AOSとvSAN 7 Update 1を比較し、(vSANが)より高い(SCSI)I/Oタイムアウトの設定、データの完全退避モードを使用し、オブジェクト再構築タイマーを60分遅延からゼロ遅延(つまり、再構築を即時開始する設定)にしたにもかかわらず、vSANは再起動と電源オンオフ(障害)シナリオの両方でI/Oの整合性エラーが発生するという事実を見てきました。 このパートでは、引き続きX-Ray のPlatform Availability, Resiliency and Integrity(プラットフォームの可用性、回復性、整合性)テストを実施しますが、今回はDell PowerEdge r740xd-24ノード(NVMe+SSD)を使用した8ノードのvSAN 7 Update 1クラスタで行います。 このテストの目的は、大規模なクラスタが結果にどのような影響を与えるか、また、vSANが大規模な環境でI/Oの整合性を維持できるかどうかを確認することです。 それでは早速、結果を見ていきましょう。 メンテナンスモード:  (このテストフェーズでは)I / Oエラーはレポートされません。  再起動時:  (このテストフェーズでは)206のI/Oエラーが確認できます。 電源オフ時:  (このテストフェーズでは)56 のI/Oエラーが確認できます。 (テスト結果の)考察:4ノードのvSANクラスタでの以前の結果と比較すると、小さいクラスタよりも大きいクラスタの方がI/Oエラー数を減らすことができるようです。 これは、仮想マシンオブジェクトがより多くのノードに配置された状況下で、テスト内容が(8ノード構成の)クラスタ内の最初の4つのノードでのみ操作(メンテナンスモード、再起動、電源オフ)を実行するため、理にかなっています。 もし、このテストが(最初の4

Nutanixの回復力 – パート 4 – RF3からイレイジャーコーディング(EC-X)への変換

 本記事は2021年6月5日にJosh Odgers氏が投稿した記事の翻訳版です。原文はこちら。本シリーズの索引はこちら。 これまでの本シリーズの過程で、クラスタはRF2からRF3へと変換されている状態です。ここで、お客様は回復力に影響を与えることなく、容量効率の向上を図りたいと考えています。ここから我々はイレイジャーコーディング(EC-X)を有効化する際のプロセスとそのスピードについて見ていこうと思います。 これまでに議論してきたように、NutanixのEC-Xはバックグラウンドタスクとして動作し、そしてWrite Cold(上書きの頻度が小さい)データのみを対象として実行されます。つまり、構成されているRF処理が通常通り完了し、そしてさらにポストプロセスとしてEC-Xの処理が行われます。これは初回の書き込みI/Oにクラスタ内の数多くのノードの参加が必要になることで、書き込みのプロセスが遅くなってしまわないことを保証するためです。 Nutanix EC-Xの実装についての更に詳しい情報については私の「Nutanix – Erasure Coding (EC-X) Deep Dive」という記事をご参照ください。 「What I/O will Nutanix Erasure coding (EC-X) take effect on? (Nutanixのイレイジャーコーディング(EC-X)はどのようなI/Oに対して適用されますか?)」:良いご質問です、Write Coldデータのみです。ですから、EC-Xでの削減効果はデータが徐々にColdになってゆき、NutanixのADSFのCuratorスキャンが低優先度タスクとしてバックグラウンドで変換を行っていくに従って時とともに向上していきます。 ADSFのRF2/3からEC-Xストライプへの変換の速さは? :極端な話をすれば、本シリーズの最初の部分で示したとおり、ハードウェアとして搭載されたドライブが可能な速さで行なえます、ですが、EC-Xは容量を削減するためのテクノロジーで、データをリスクに晒すものではないため、例えばノードやドライブの障害時の動作と同じ速さでやる意味はありません。 ですから、内部的な「ErasureCode:Encode(イレイジャーコード:エンコード)」タスクの優先順位は以下に示すとおり3で、それに

Nutanixの回復力 –パート10– ディスクスクラビング / チェックサム

本記事は2018年11月22日にJosh Odgers氏が投稿した記事の翻訳版です。原文はこちら。本シリーズの索引はこちら。 このシリーズでは、Nutanixプラットフォームがいかに優れた回復力を有しているかを示す幅広いトピックを取り上げてきました。これには、障害時であっても新規書き込みのためのデータ整合性を維持できることや、障害後に問題を引き起こす次の障害のリスクを最小限にするために、タイムリーにリビルドする能力が含まれます。 このような情報があるにもかかわらず、競合ベンダーは、「2つのコピーが失われてしまえば、リビルド時間は問題の本質ではない」といった主張で、Nutanixが提供するデータインテグリティ(データ整合性・一貫性の担保の仕組み)の信用を貶めようとしています。現実的には、データの両方のコピーが同時に失われる可能性は低く、これは安易な主張です。しかし、もちろんNutanixは、最大限の回復力を求めるお客様のために、3つのデータのコピーを保存可能なRF3もサポートしています。 それでは、パート10に進みましょう。ここでは、ディスクスクラビングとチェックサムという2つの重要なトピックについて説明します。この2つの重要なトピックは、RF2とRF3の構成が非常に高い回復力を持ち、データが失われる可能性が極めて低いことを保証するものです。 まず、チェックサムについてですが、チェックサムとは何でしょうか?チェックサムは、書き込み操作中に作成された少量のデータであり、後で(チェックサムのデータを)読み込んで、実際のデータが完全なままであるかどうか(つまり、破損していないかどうか)を確認できます。次に、ディスクスクラビングですが、データの整合性を定期的にチェックするバックグラウンドタスクであり、エラーが検出された場合、ディスクスクラビングはエラー修正プロセスを開始して、修正可能な単独のエラーを修正します。 Nutanixは、すべての書き込み操作(RF2またはRF3)に対してチェックサムを実行し、すべての読み取り操作に対してチェックサムを検証します。これは、データの整合性検証がIO処理の一部であり、スキップしたりオフにしたりすることができないことを意味します。 データの整合性は、あらゆるストレージプラットフォームの最優先事項であり、これが故にNutanixはチェックサムを

HCIプラットフォームの可用性、回復力、整合性 – パート7 – vSAN 7U1 および対障害性2 (FTT2)

本記事は2021年2月8日にJosh Odgers氏が投稿した記事の翻訳版です。原文はこちら。本シリーズの索引はこちら。 このシリーズではNutanix AOSが回復力ファクタ(RFつまり2つのデータコピー)を利用した場合に3ノードクラスタの場合も含め、メンテナンスモード、再起動、および障害シナリオにおいて完全な仮想マシンの可用性とデータの整合性を維持できるということを見てきました。 そして、パート2ではNutanix AOSとvSAN 7 Update 1とを比較し、vSANが再起動と電源サイクル(障害)シナリオの両方で、以下のようなあらゆるvSANにとって有利に働く状況を作ったとしてもI/O整合性のエラーに苦しんでいるという事実を確認しました:vSANが長い(SCSI)I/Oタイムアウト設定を利用している (180 秒 vs Nutanix 30 秒) vSANがデータの完全退避モードを利用している vSANのオブジェクトリビルドタイマーを60分の遅延から遅延なしに変更 (すなわち、これによってリビルドは即時開始される) より大きなクラスタ(8ノード)を利用し、その上で、テストはそのクラスタ内の最初の4ノードのみで実施する それではvSAN 7 Update 1が対障害性(FTT)を2に設定した場合の動作について見ていきます、つまりvSANはデータのコピーを3つ書き込んでいくことになり、理論的には回復力を向上して、2つの同時ドライブもしくはノード障害に対応ができることになります。 この一連のテストは回復力にフォーカスを当てており、FTT2(もしくはNutanix AOSではRF3)を利用するということは同時に実効で利用可能なキャパシティを50%からファイルシステム、キャッシュドライブ、そして回復用のキャパシティ(N-1/N-2)をマイナスしたものから33%から同じオーバーヘッドをマイナスしたものへと減少させるというコストを伴うということを理解しておくことが重要です。 FTT2(NutanixではRF3)を利用する場合には、同じ仮想マシンのフロントエンドのパフォーマンスに対してもより多くのシステムリソース(例:CPU/ストレージIO)を消費します。例えば、デュアルパリティへの移行によってサイジングには劇的な影響があり、大抵の場合33%以上になりますし、もちろんプラ

Nutanixの回復力 – パート 5 – CVMのメンテナンス中または障害時のRead I/O

2018年6月8日にJosh Odgers氏が投稿した記事の翻訳版です。原文はこちら。本シリーズの索引はこちら。 これまでのシリーズでは、ADSFがクラスタ全体にデータを分散することで、ノード障害から迅速に回復する方法について説明してきました(パート1)。また、耐障害性をRF2(Resiliency Factor 2)からRF3へ変換した場合や(パート2)、よりスペース効率の高いEC-X(Erasure Coding)構成へ変換する場合でも(パート4)、影響がないことを説明しました。 ここでは、AOSのアップグレードなどのNutanix Controller VM (CVM)のメンテナンス時や、CVMのクラッシュや誤ってまたは悪意を持って電源を切ってしまった場合などの障害時に、VMがどのような影響を受けるかという非常に重要なトピックを取り上げます。 早速ですが、Nutanix ADSFがどのようにデータを書き込み、保護するのか、その基本を説明します。 下図は、3ノードでクラスタで、1台の仮想マシンが稼働している構成です。仮想マシンはa,b,c,dのデータを書き込んでいます。通常、すべての書き込みは、1つのレプリカが仮想マシンを実行しているホスト(ここではノード1)に書き込まれ、もう1つのレプリカ(RF3の場合は1つまたは複数)がディスク配置の選択優先順位に基づいてクラスタ全体に分散配置されます。ディスク配置の選択優先順位(私は「インテリジェント・レプリカ・プレースメント(Intelligent replica placement)」と呼んでいます)は、データが最初から最適な場所に置かれることを保証します。  クラスタに1つ以上のノードが追加された場合、インテリジェント・レプリカ・プレースメントは、新たな書き込みが発生しなかった場合でも、クラスタがバランスのとれた状態になるまで、それらのノードに比例してより多くのレプリカを送信します。ADSFは低い優先度のバックグラウンド処理でディスクバランスを行います。 Nutanixがどのように複数のレプリカを使用してデータ保護を行っているか(「Resiliency Factor」と呼ばれる)の基本がわかったところで、Nutanix ADSFストレージ層のアップグレード時にどのようなことが起こるかを確認します。 アップグレードは、

vSAN/VxRAILのストレッチクラスタはデータ整合性を維持できるか?

本記事は2021年2月11日にJosh Odgers氏が投稿した記事の翻訳版です。原文はこちら。本シリーズの索引はこちら。 このシリーズでは、ではNutanix AOSが回復力ファクタ(RFつまり2つのデータコピー)を利用した場合に3ノードクラスタの場合も含め、メンテナンスモード、再起動、および障害シナリオにおいて完全な仮想マシンの可用性とデータの整合性を維持できるということを見てきました。 そして、パート2では、Nutanix AOSとvSAN 7 Update 1とを比較し、vSANが再起動と電源サイクル(障害)シナリオの両方で、以下のようなあらゆるvSANにとって有利に働く状況を作ったとしてもI/O整合性のエラーに苦しんでいるという事実を確認しました: vSANが長い(SCSI)I/Oタイムアウト設定を利用している (180 秒 vs Nutanix 30 秒) vSANがデータの完全退避モードを利用している vSANのオブジェクトリビルドタイマーを60分の遅延から遅延なしに変更 (すなわち、これによってリビルドは即時開始される)  より大きなクラスタ(8ノード)を利用し、その上で、テストはそのクラスタ内の最初の4ノードのみで実施する パート7では、7ノードのクラスターでvSANの耐障害性(FTT)を2に設定した場合の動作について見ていきましたが、驚くことに、デュアルパリティのvSANを使用してもデータ整合性の問題に対処できないことがわかりました。 それでは、vSANをストレッチクラスター構成で使用する場合、仮想マシンの可用性とデータの整合性がどのように扱われるのかを確認していきます。 このテストは、8台のDell PowerEdge R740xd-24を使用し、VMware ESXi, 7.0.1, Build 17551050を用いて実施しました。 最初のテストでは、「4+4台構成のストレッチクラスタ|FTT1|I/Oタイムアウト180秒」を使用し、Active/Passiveスタイルのストレッチクラスタをシミュレートしました。ここでは、フォールトドメイン1では3つのVMを実行し、フォールトドメイン2ではVMを実行しませんでした。 簡単に言えば、このテストにおけるフォールト・ドメインとは、サイトやデータセンターを意味しますが、ノードはすべて同じ25Gbのネ

Nutanixの回復力 - パート 6 - CVMのメンテナンスや障害時のWrite I/Oについて

 本記事は2018年6月8日に Josh Odgers 氏が投稿した記事の翻訳版です。原文はこちら。本シリーズの牽引はこちら。 パート5では、CVMのメンテナンスや障害時のI/Oの処理方法について説明しましたが、今度は同じメンテナンスや障害シナリオでWrite I/Oを処理するという、間違いなくより困難で重要なタスクを説明する必要があります。パート5をお読みになった方であれば、この次のセクションがよくわかると思います。パート5を読んでいない方は、ぜひ読んでいただきたいのですが、ここではNutanix ADSFがどのようにデータを書き込み、保護するのかという基本的なことを簡単に説明します。 以下の図を見ると、3ノードのクラスターに1台の仮想マシンがあります。仮想マシンはa,b,c,dで表されるデータを書き込んでいます。通常の状況では、すべての書き込みは、1つのレプリカが仮想マシンを実行しているホスト(この場合はノード1)に書き込まれ、他のレプリカ(RF3の場合は1つまたは複数)はディスク適合性の値に基づいてクラスター全体に分配されます。ディスクの適合性の値(私は「インテリジェント・レプリカ・プレースメント」と呼んでいます)は、容量とパフォーマンスに基づいて、データが最初から最適な場所に配置されることを保証します。  クラスターに1つ以上のノードが追加された場合、インテリジェント・レプリカ・プレースメントは、クラスターがバランスの取れた状態になるまで、それらのノード数に比例して多くのレプリカを(分散して)送信します。万が一、新たな書き込みが発生しなかった場合でも、ADSFにはバックグラウンドでディスクバランスをとるプロセスがあり、低い優先度でクラスター内のバランスをとります。 Nutanixが複数のレプリカを使用してデータを保護する方法(「レジリエンシーファクター(RF)」と呼ばれるもの)の基本がわかったところで、Nutanix ADSFストレージ層のアップグレード時に何が起こるかについて説明します。 アップグレードはワンクリックで開始され、設定されたレジリエンシーファクター(RF)やイレイジャーコーディング (EC-X) の使用の有無に関わらず、一度に1つのコントローラVM (CVM)をローリング方式で実行します。ローリングアップグレードでは、一度に1つのCVMをオフ

Veeam Software at Nutanix Vol.1 Veeam Software会社紹介とラインナップ+ライセンス

皆様こんにちは。ヴィームソフトウェアの斉藤と申します。この度こちらの日本語フォーラムに寄稿させていただくことになりました。これから以下4回に分けてトピックをお伝えしようと思います。Vol.1 Veeam Software会社紹介とラインナップ+ライセンス(今回のトピック) Vol.2 Veeamのバックアップについて Vol.3 Nutanix Mine "with Veeam"について Vol.4 クラウドやKubernetes環境のバックアップについて Veeam SoftwareについてVeeam Softwareは2006年、スイス・バールにて創業した主にバックアップを生業とするデータマネジメントに関する企業になります。2020年に米国の投資会社「Insight Partner」による買収を経て現在はアメリカのオハイオ州に本社機構を移転しております。 2020年の売上高は10億ドルを超え、1,000億円の規模に到達しました。バックアップ業界におけるシェアはヨーロッパではNo.1、そしてグローバルでもこの度2020年後半にVeritas社を抜き、遂にNo.2 に浮上致しました。  お客様満足度も非常に高いのがポイントになりますが、中でもNPS (Net Promoter Score)の高さをベンチマークに挙げさせていただいており、使いやすさの方向性はNutanixに非常に近しいものだと考えております。  第三者機関の評価も非常に良好で、Gartner社のMagic Quadrantでは4年連続「Leaders」ポジションに選出されております。  2020年は縦軸の「実行力(Ability to Execute)」にてNo.1 のご評価をいただき、まさに有言実行でビジネスを行っている事が評価されていると考えております。 近年のビジョンとなるメッセージは「クラウド・データ・マネジメント」を掲げており、データ視点におけるマルチクラウド環境のDXをめざしております。ビジョンにおける方向性もまた、Nutanix 社に近いものだと考えております。 Veeam SoftwareのポートフォリオそれではVeeam Softwareが提供しているポートフォリオをご紹介させていただきます。 Veeamのコア製品ともいえるソリューションが、「Veeam Availability S

HCI プラットフォーム の可用性、 回復力、整合性 X-Ray のシナリオがGAしました!

 本記事は2021年3月5日にJosh Odgers氏が投稿した記事の翻訳版です。原文はこちら。本シリーズの牽引はこちら。 私はしばらくの間、社内のエンジニアリング/QAだけでなく、お客様がNutanixのより詳細な機能を迅速/容易にかつ反復してテストできるように、新しいX-Rayシナリオの構築に取り組んできました。 HCIプラットフォームの可用性、回復力、そして整合性シリーズでは、Nutanix AOSとVMware vSANの両方でテストがどのように機能するかを詳細に説明しており、AOSがvSANに対して大きな優位性を持ち、最小3ノードの構成で障害が発生しても常にデータの整合性(可用性と回復力の両方)を維持できることを強調しています。 一方、vSANは、より高いI/Oタイムアウト、より大きなクラスター、3つのデータコピー(FTT2)でもI/Oエラーが発生します。 しかし、私の言葉を鵜呑みにせず、ご自身でもテストを行ってみてください。 Nutanix ポータル から X-Rayバージョン3.10.2の、vSphere用のOVAまたはAHV用のQCOWイメージをダウンロードし、テストを行う予定のクラスターとは別のクラスターにデプロイするだけです。 その後、WebブラウザでX-Ray VMのIPアドレスに移動し、「ターゲット」クラスターを設定し、検証を実行して、すべての帯域外管理と認証情報が機能していることを確認すれば、準備完了です。  デフォルトのオプションでは、メンテナンスモード、再起動、および10%の稼働率でのノード障害のシミュレーションを含む、プラットフォーム全体の回復力テストを実行します。 このテストでは、クラスター内の1つのノードを除くすべてのノードに1つの仮想マシンをデプロイすることで、クラスター内のノード数に応じて自動的にスケールします。これにより、適切なサイズの実環境であるN+1をシミュレートするとともに、各ノードのフラッシュドライブ数に基づいて目標I/Oレベルを調整します。 フラッシュデバイスの数に基づいてI/Oレベルを調整することで、現実的ではない、あるいは人為的に高いエラー数につながる、小規模ノードやクラスターへの単純な過負荷を避けることができます。 このテストの目的は何でしょうか? 簡単に言えば、もしもHCIプラットフォームが、VMの可用性に

Veeam Software at Nutanix Vol.2 Veeamのバックアップについて

皆様こんにちは。ヴィームソフトウェアの斉藤と申します。Veeamに関するフォーラム寄稿の第2弾となります。前回にも記載しましたが、まずは以下4回に分けてトピックをお伝え致します。  ・Vol.1 Veeam Software会社紹介とラインナップ+ライセンス ・Vol.2 Veeamのバックアップについて(今回のトピック) ・Vol.3 Nutanix Mine "with Veeam"について ・Vol.4 クラウドやKubernetes環境のバックアップについて Veeam Backup & Replicationについて Vol1.でもご紹介しましたが弊社のメインプロダクトになるのがVeeam Backup & Replication(通称 VBR) になります。ちなみに VBR の「R」は「レプリケーション」になりますのでお間違えの無きようお願い致します。※Commvault社が製品名称を「Simpana」から 「Backup & Recovery」に改称したこともあり  VBRは元々仮想化向け製品でしたが、現在は幅広いプラットフォームに対応しております。 ・仮想化基盤(ESXi/Hyper-V/AHV/RHV※1)のエージェントレスバックアップ ・VMware ESXi/Microsoft Hyper-V 環境のレプリケーション ・VMware ESXi/Nutanix AHVのストレージスナップショット作成 ・Windows/Linux/Oracle Solaris/IBM AIX/Mac環境のエージェントバックアップ ・AWS/Microsoft Azure/Google Cloud上のエージェントレスバックアップ連携※2 ・Oracle RMAN/SAP HANAのPlug-inサポート  ※1: 近日GA予定  ※2: Veeam Backup for AWS/Microsoft Azure/Google Cloud Platformを利用 Veeam の提唱する「3-2-1」ルール  もはやバックアップ出来ないものは無い、といったくらい多種多様なデータ保護に対応しておりますが、Veeam Softwareではデータ保護に関しての基本コンセプトとして「3-2-1ルール」を提唱しております。聞いたことがないコンセプトだと思いま

.NEXT Digital Experience 2021 アナウンスメントについてのブログ ー索引ー

本記事は.NEXT Digital Experience 2021でのアナウンスメントについての記事の索引です。2021年内は.NEXT Digital Experience 2021 (グローバルイベント)のレコーディングにアクセスが可能ですので、ぜひ詳細が気になる方はイベントへの登録をお願いいたします。 また、2021年10月7日には.NEXT Conference Japan 2021が実施されます。字幕入りのキーノートはもちろんですが、完全日本オリジナルコンテンツの22に及ぶブレイクアウトセッションは必見です。こちらも10月末まで視聴が可能ですので、ぜひイベントへの登録をお願いいたします。(グローバルイベントとは登録が独立していますのでご注意ください。) 本索引では、Nutanix社員はもちろん、コミュニティでの情報も集めて行きます。.NEXTに際して、こんな記事を書きましたというコミュニティの皆様、ぜひコメントにてお知らせください。 記事タイトル 概要 原文リンク Nutanix AOS 6のご紹介 HCIソフトウェアのパイオニアであるNutanix AOSの大規模なマイルストーンであるNutanix AOS 6ソフトウェアをご紹介します。 Announcing Nutanix AOS 6 NutanixとMicrosoft Azureによるハイブリッドクラウドインフラストラクチャ NutanixはMicrosoftとコラボレーションし、より素早く、シンプルで、コスト効率性の高いクラウドへの道筋をご提供します。 Hybrid Cloud Infrastructure with Nutanix and Microsoft Azure Nutanix Eraによる思い通りのデータベース・アズ・ア・サービス Nutanix Eraの最新の機能をご紹介します。 Database-as-a-Service on your terms with Nutanix Era データ中心の世界のためのストレージを再考する Nutanixの統合ストレージ ー 非構造化データ管理の新たなマイルストーン Rethinking Storage For A Data Centric World   コミュニティの皆様のブログブログタイト

NutanixとMicrosoft Azureによるハイブリッドクラウドインフラストラクチャ

本記事は2021年9月21日にSahil M Bansal氏とVidhi Taneja氏が投稿した記事の翻訳版です。原文はこちら。.NEXT 2021に関する記事の索引はこちら。 NutanixはMicrosoftとコラボレーションし、より素早く、シンプルで、コスト効率性の高いクラウドへの道筋をご提供します。 近年、そしてこの18ヶ月は特に顕著になってきましたが、ITチームは常に進化し続けるビジネスニーズの真ん中で、増加し続けるハイブリッドなワークプレースをサポートするために、より俊敏にならなければならないというプレッシャーに晒されてきました。多くのビジネス部門では数年分にも値するデジタルトランスフォーメーションの活動を削減された予算の中で運用を行い、短時間に詰め込んできました。プライベートとパブリッククラウドベンダーの両方がそれぞれのお客さまのニーズ、それは多くの場合でオンプレミスとクラウドをミックスさせたインフラストラクチャ上で、ワークロードを稼働させる、つまりはワークロードとビジネスのニーズにより良く答えるための取り組みを行っています。 ハイブリッドクラウドアーキテクチャのアイディアは少し前から存在していましたが、そこにはいくつかのハイブリッドクラウドプラットフォームの急激な採用を阻む課題がありました。オンプレミスのデータセンターとパブリッククラウドの間の複雑なネットワークの管理は長きにわたる障害で有り続け、また、レガシーなアプリケーションをクラウド向けにリアーキテクトすることは時間のかかる作業でコストも高く付きます。もう一つの課題はそれぞれのクラウドのための複数の異なる管理ツールを使うことによって生じるサイロによる非効率性です。 これらの課題を解決し、お客様のITニーズを次なるレベルへとパワーアップさせるため、Nutanixはマイクロソフトとハイブリッドクラウドソリューションにおいて協業し、クラウドとオンプレミスの間の境界を融合させ、完全なハイブリッドクラウドエクスペリエンスをご提供します。 プレビュー開始: Nutanix Clusters on Microsoft Azure Nutanix Clusterson Microsoft Azure を限定的なプレビューとしてアナウンスできることを大変喜ばしく思います! NutanixはMicrosoftと従

Nutanix AOS 6のご紹介

本記事は2021年9月21日にNutanix HCI Teamが投稿した記事の翻訳版です。原文はこちら。.NEXT 2021に関する記事の索引はこちら。 HCIソフトウェアのパイオニアであるNutanix® AOSの大規模なマイルストーンと、Nutanix AOS 6ソフトウェアのリリースをアナウンスできることを大変喜ばしく思います。 VMworld 2011で市場を創生するHCIソリューションを立ち上げて(Best of VMworldアワードも受賞しています)から10年、Nutanix AOS™ インフラストラクチャソフトウェアは仮想化データセンターの業界標準のプラットフォームへと成熟し、今ではお客様をハイブリッドクラウドへとつながる橋渡しに貢献しています。 本日AOS 6は我々の差別化されたアーキテクチャのコア機能上に構成しながら、一方で破壊的な新機能群を追加しています。このリリースではパフォーマンスの最大化をより簡単に成し遂げられるようにするのみならず、クラスタの回復力についての可視化と統制を向上させて、ミッションクリティカルなワークロードに対するサポートを改善しています。それに加えて、AOS 6では大規模環境におけるセキュリティと保護を長く待ち望まれていたflow networkingと新しいDRダッシュボードも加え、改善しています。 パフォーマンスと拡張性Replication Factor 1 (RF1)Nutanix AOSはHCIクラスタ上で動作するアプリケーションのデータを複数のコピーを保持することで保護しています。AOSはクラスタ内の異なるノードに複数のコピーを保存しており、これによってハードウェア障害発生時に自動的にデータを復元することができます。これはレプリケーションファクタ(Replication Factor)として知られており、2 または 3のコピー(それぞれ RF2、RF3)を作成するように構成することが可能です。Hadoop®、SAS Analytics®、Splunk® そして NoSQL®データベースのような多くのモダンなビッグデータアプリケーションは、それを下支えするインフラストラクチャの力を借りることなく、自身のデータをアプリケーションレベルで保護しています。従来型のSQLデータベースもいくらかの非永続的な一次で、保護の必

データローカリティはストレージのパフォーマンスにのみ関係すると思いますか?もう一度考えてみてください!

本記事は2020年6月11日にJosh Odgers氏が投稿した記事の翻訳版です。原文はこちらです。 Nutanixの競合他社が、データローカリティは重要ではないと自分自身やお客様を納得させようと必死に努力しようとも、ネットワーキングを含むリソースを不必要に使うことは、非効率であり、ボトルネックとなって機能面やパフォーマンスに影響を与える可能性があるという事実は変わりません。 Nutanixは、当初よりこのような課題に対処するためにAOSを設計し、データローカリティが特にプラットフォームの成功の鍵となり、私どものお客様環境を拡大し、長年にわたり最もミッションクリティカルなエンタープライズワークロードをサポートしてきました。 ここでは、データローカリティのそれほど目立たないながらも重要な利点をいくつか紹介します。 1. より高速なvMotion/ノードフェイルオーバー使用可能なネットワーク帯域幅が増えるほどvMotionの処理は早く完了し、VMとアプリケーションへの影響が少なくなるため、明らかな効果が得られます。VM のパフォーマンスが向上するだけでなく、ストレージ、ハイパーバイザ、ハードウェアのメンテナンス/アップグレードのためにメンテナンスモードに入るホストなどの運用保守業務を迅速に完了できます。ビジネスクリティカルアプリケーションが、vMotionの影響を長時間受けたことはありませんか? vMotionに十分な帯域幅を確保することは、vBCA(ビジネスクリティカルアプリケーション)を仮想環境で利用する上で重要です。 2. 同期/非同期レプリケーションの帯域幅の更なる確保実際の状況では、フロントエンドVMのIOPS/スループットだけではなく、目標復旧時点 (RPO)と目標復旧時間(RTO)に関する実際に必要なSLAを満たすことも必要です。レプリケーションをスケジュール通りに実行するために使用できる帯域幅が不足している場合、SLAの達成に影響を与える可能性があります。 3. クラスターの再構築/再同期のパフォーマンスドライブ、ノード、ブロック、またはラックの障害が発生すると、HCI 製品は再構築/再同期を実行して、設定されたレベルの回復力に復旧します。(通常、2つか 3つのデータのコピー、または同等のパリティを持っています)。これらの操作は、データの整合性を復元し、

Veeam Software at Nutanix Vol.3 Nutanix Mine with Veeamについて

皆様こんにちは。ヴィームソフトウェアの斉藤と申します。Veeamに関するフォーラム寄稿の第3弾となります。前回にも記載しましたが、まずは以下4回に分けてトピックをお伝え致します。  ・Vol.1 Veeam Software会社紹介とラインナップ+ライセンス ・Vol.2 Veeamのバックアップについて ・Vol.3 Nutanix Mine "with Veeam"について(今回のトピック) ・Vol.4 クラウドやKubernetes環境のバックアップについて Nutanix Mine with Veeamのはじまり  Nutanix Mineはご存知のとおりNutanixポートフォリオの一環として発表されたソリューションになります。“Mine”と言う英単語を聞くと私はまず「マインスイーパー」を思い出しますが、そのMineとは全く異なります。Mineにつけられたアイコンをご覧ください。ダイヤモンドが記載されています。つまり「鉱山」という定義が正しく、その心としてバックアップデータの中にあるダイヤモンドを掘り起こそう!というニュアンスが込められています。ゲームで言うと、「マインクラフト」が正解という事になります。ひょっとしたら「私のもの (mine)」といった副次的意味合いも含まれているかもしれません。参照先: https://www.nutanix.com/jp/products/mine そんな期待を込めてリリースされたNutanix Mineは、Nutanix プラットフォームの上でバックアップソフトウェアが稼働する統合型ソリューションとなります。稼働するバックアップソフトはNutanix プラットフォーム理念を継承し、マルチベンダ仕様となっており現在はHYCUとVeeam Softwareが選択可能となります。弊社がその一つとして選ばれたのが2年前の2019年5月になります。 参照先: https://www.veeam.com/jp/news/nutanix-mine-with-veeam-simplifies-secondary-storage.html Nutanix Mine with Veeamの提供価値  「NutanixのバックアップだったらやっぱりHYCUじゃないの?」と思う方もいらっしゃるかもしれません。確かにHYCUはNutanixと

Nutanixの回復力 パート1 ノード障害時のリビルドのパフォーマンス

本記事は2018年5月30日にJosh Odgers氏が投稿した記事の日本語版です。原文はこちら。本シリーズの索引はこちら。 2013年半ばからNutanixに勤務し、ビジネスクリティカルなアプリケーション、スケーラビリティ、回復力、パフォーマンスに注力してきました。私はお客様やパートナーと、回復力について、また、Nutanixプラットフォームをどのように構成するのがベストなのかについて、たくさんの議論をしています。 Nutanixプラットフォームの多くの強みの1つであり、私が多くの時間とエネルギーを費やしている分野は、回復力とデータの整合性です。それには障害のシナリオとプラットフォームがどのように対処するかを理解することが重要です。 Nutanixは、独自の分散ストレージファブリック(ADSF)を使用して、仮想マシン、コンテナ、さらには物理サーバーにストレージを提供しています。このストレージは、レジリエンシーファクター(RF)2または3で構成することができます。つまり、回復力とパフォーマンスのために、データは2つもしくは3つのコピーが保存されます。 単純化して考えれば、RF2とN+1(例:RAID5)、RF3とN+2(例:RAID3)を比較するのは簡単です。しかし、実際には、RF2と3は分散ストレージファブリックのおかげで、従来のRAIDよりもはるかに高い耐障害性を持っています。これは、障害からのリビルドを極めて迅速に行うことができることと、障害が発生する前に問題を検出して解決するプロアクティブなディスクスクラビング機能を備えているためです。 Nutanixは、読み取りと書き込みのたびにチェックサムを実行し、データの整合性を最大限に確保するための継続的なバックグラウンドスクラビングを行います。これにより、LSE(Latent Sector Errors)やビットロット(Bit Rot)、通常のドライブの消耗などが事前に検出され、対処されるようになります。 ADSFの回復力を議論する際に重要なのは、ドライブやノードに障害が発生した場合に、RF2またはRF3に準拠した状態まで回復する速度です。 リビルドは、すべてのノードとドライブにまたがる完全な分散処理(多対多の処理)です。ですから、非常に高速ですし、ボトルネックを回避するため、そして稼働中のワークロードへの影響を軽

データ中心の世界のためのストレージを再考する

本記事は2021年9月21日にTuhina Goel氏が投稿した記事の翻訳版です。原文はこちら。.NEXT 2021に関する記事の索引はこちら。 Nutanix ユニファイドストレージ - 非構造化データ管理における新たなマイルストーンNutanixは長きに渡って、「ユニファイドストレージ(統合ストレージ)」プラットフォームを提供し、その形がどのようなものであれ(構造化データ または 非構造化データ)、それがどのような場所であれ ー オンプレミス、パブリッククラウド、もしくはエッジ上 ー お客さまのデータを管理し、保護できるとお約束してきました。このビジョンを胸に、お客様のデータ管理をシンプル化でき、データ分析ワークロードから勝ちを得るまでの時間を短縮、爆発的なデータの成長を管理し、セキュリティリスクからそのデータを保護することのできるNutanix Unified Storage™ソリューションの新たな機能をアナウンスできることを大変喜ばしく思います。この最新のリリースの基盤は ー 2つの製品をまたいだデータのファイフサイクル全体の統合 ー Nutanix Files™ および Nutanix Objects™で ーお客様へ完全に統合されたストレージエクスペリエンスを提供いたします。 シームレスなデータのライフサイクル管理Nutanix Files 4.0ではSmartTier™(スマート階層化)が導入され、NASシェアからNutanix Objects(または、Amazon S3のようなあらゆるS3互換エンドポイント)を含むプライベートもしくはパブリッククラウドへの透過的なデータ階層化機能を提供します 。この新しい機能ではお客様はNutanix Filesから長期保存用のデータストレージとしてNutanix Objectsへとデータを移行し、コストを削減する一方で、引き続き単一インターフェイスからのアクセスを維持することができます。これによって、デジタル文書、音声や動画ファイル、アクティブ/パッシブアーカイブのような古くなったデータの保存についてのコストを下げ、ビジネスや規制要件を満たすことができます。 これを更にもう一歩を進めると、「凍結」オブジェクトをパブリッククラウドへと移動させ、その非常に安価なアーカイブむけの価格を活用することで、長期的なコストを削減す

Nutanix Eraによる思い通りのデータベース・アズ・ア・サービス

本記事は2021年9月21日にJeremy Launier氏が投稿した記事の翻訳版です。原文はこちら。.NEXT 2021に関する記事の索引はこちら。 今現在、データベースはほぼすべての組織に存在すると言っても言い過ぎではありません ー データベースは至るところにあります ー それ無しでは業務もそして競争に打ち勝つこともできません。組織の規模やその複雑さに関係なく、データベースのアナリストと管理者は疲れる暇もなくデータを管理し、データベースが提供するビジネス価値 ー 競争優位性に関する分析や戦略的な活動の推進 ー を展開することでステークホルダーをサポートしています。  NutanixはIDCに、データベースの管理にまつわる課題や複雑さについて議論したInfoBrief *の執筆を委託しました。その結果は目を見開くべきものでした :73%の組織はオンプレミスとクラウド環境とで異なる手順でデータベースの管理を行っていました。 75%のリレーショナル・データベース(RDBMS)環境は依然としてプライベートクラウドに残されていました。 63%の回答者はプライベートとパブリッククラウドをまたがった共通のデータベース管理が非常に有用であると信じていると回答しました。 多くの組織はデータベースのライフサイクルの管理の複雑性に消耗しており、特にこの調査によってオンプレミスでこれが顕著であることが明らかになりました。これには新たなデータベースの展開、既存のデータベースの管理、そしてデータベースのライフサイクルに関連するバックアップ/リカバリ、アップグレード、パッチ、拡張、そしてデータ管理などの多くの日々のタスクが含まれています。  Nutanixは3年ほど前にEra®データ管理ソフトウェアをリリースし、データベース管理にシンプルさと自動化をもたらしました。我々はお客様がデータベースサービスをAPI経由でオンプレミスでも、クラウド上でも、もしくはクラウドをまたぐ形でも一貫したやり方で、運用し、利用する、そうした未来を思い描いています。我々はこれをお客様に対してデータベースにまつわるタスクを透過的なやり方で自動化することでOSとデータベースのヴァージョン、そしてカスタマイズ性を維持したまま、自動化による効果を享受できるようにすることで提供しようとしています。製品の立ち上げ以降、Nuta

Nutanixの回復力 – パート2 - RF2からRF3への変換

本記事は2018年5月31日にJosh Odgers氏が投稿した記事の日本語版です。原文はこちら。本シリーズの索引はこちら。 パート1では、Nutanix AOSがAcropolis分散ストレージファブリック (ADSF)のおかげで、ノード障害からのリビルドを高速かつ効率的に行う能力について説明しました。パート2では、ストレージコンテナがどのようにしてRF2からRF3に変換されるのか、また、その操作が完了するまでのスピードについて、紹介したいと思います。 今回のテストでは、クラスター内に12台のノードしか存在しません。  まず、ストレージプール容量の使用状況から見てみましょう。  現在、クラスター全体で50TB超のストレージ使用量であることが確認できます。 RF3への変換、つまり簡単に言えば全データの3つ目のレプリカを追加する際には、十分な空き容量を確保する必要があり、さもないとRF3のコンプライアンス上、問題があります。 次に、クラスタ(およびメタデータ)のRedundancy Factor(冗長化係数)をRF3に増やします。これにより、クラスタはRF3コンテナをサポートし、メタデータの観点からは少なくとも2つのノード障害に耐えることができます。  次に、対象のストレージコンテナをRF3に増やします。 コンテナがRF3に設定されると、Curatorはクラスターが設定されたRedundancy Factorに準拠していないことを検出し、追加のレプリカを作成するためのバックグラウンドタスクを開始します。 今回のケースでは、ストレージプールに約50TBのデータがある状態でスタートしたので、このタスクでは50%のレプリカを作成する必要があり、最終的には約75TBのデータを格納することになります。 新しいRedundancy Factorに準拠するために、クラスターが25TBのデータを作成するのにかかった時間を見てみましょう。  今回は、7GBps以上のスループットで3時間未満の処理時間を示しており、1時間あたり約8.3TBとなりました。このプロセス全体を通して、クラスターはRF2レベルの完全な回復力を維持しつつ、このフェーズで新しい書き込みが行われた際には、すべてRF3で保護されていたことに注目してください。 下の図は、ストレージプールの使用量が運用中にリニアに増加してい

Nutanixの回復力 - パート 7 – ハイパーバイザーアップグレード中のReadおよびWrite I/O

本記事は2018年6月11日に Josh Odgers 氏が投稿した記事の翻訳版です。原文はこちら。本シリーズの牽引はこちら。 パート1から4をまだ確認していない場合はぜひご確認ください。これらは重要なレジリエンシーファクターの障害からの回復速度に関するもので、その場でRF2からRF3へ、もしくは同じ回復力レベルを提供しながら容量を節約するイレイジャーコーディング(EC-X)へと変換することで、回復力を向上させることについて解説しています。 パート5と6では、CVM のメンテナンスまたは障害時に読み取りと書き込みI/Oがどのように機能するか解説し、このシリーズのパート 7 では、ハイパーバイザー (ESXi、Hyper-V、XenServer、AHV)  のアップグレードが読み取りと書き込み I/O にどのような影響を与えるかについて説明します。 この投稿ではパート5と6を頻繁に参照するので、このブログを完全に理解するには前の投稿をよく読んでください。 パート5とパート6で説明したように、CVM の状況に関係なく、読み取りおよび書き込み I/O は引き続き提供され、データは設定されたレジリエンシーファクターに準拠したままです。 ハイパーバイザーをアップグレードした場合、仮想マシンはまずノードから移行し、通常通りIO操作を続行します。ハイパーバイザーに障害が発生した場合、仮想マシンは HA によって再起動され、通常のIO操作を再開します。 ハイパーバイザー (またはノード) の障害またはハイパーバイザーのアップグレードのいずれの場合でも、最終的にはいずれのシナリオにおいても、仮想マシンを新しいノードで実行し、元のノード (下の図のノード 1) がオフラインになり、ローカルドライブ上のデータが一定の期間利用できなくなります。  このシナリオでは、読み取り I/O はどのように機能しますか? パート5での説明と同じ方法で読み取りはリモートで処理されます。または、2 番目のレプリカが仮想マシンが移行された (または HA によって再始動された) ノード上に存在する場合、読み取りはローカルで行われます。リモートでの読み取りが発生した際に、1MB のエクステントはローカライズされ、その後の読み取りはローカルで実行されるようになります。 書き込みI/Oはどうですか? パート6と同

Veeam Software at Nutanix Vol.4 クラウドやKubernetes環境のバックアップについて

皆様こんにちは。ヴィームソフトウェアの斉藤と申します。Veeamに関するフォーラム寄稿の第4弾となります。   ・Vol.1 Veeam Software会社紹介とラインナップ+ライセンス  ・Vol.2 Veeamのバックアップについて ・Vol.3 Nutanix Mine "with Veeam"について ・Vol.4 クラウドやKubernetes環境のバックアップについて(今回のトピック) Veeamのマルチクラウドアーキテクチャ はじめにVeeamは「クラウド・データ・マネジメント」の名のもと、マルチクラウド環境下でのインフラマネジメントを推進していることを改めて共有させていただきます。つまり、オンプレミスで稼働するワークロードのみならず「クラウドリフト」および「クラウドシフト」そして「モダナイゼーション」に対応するための支援をさせていただいております。今回はその3つを以下の観点でご紹介したいと思います。 ・クラウドリフト:パブリッククラウド(AWS/Azure/GCP)への移行 ・クラウドシフト:パブリッククラウド(AWS/Azure/GCP)上のバックアップ ・モダナイゼーション:Kubernetes 環境のバックアップ クラウドリフト:パブリッククラウド(AWS/Azure/GCP)への移行  現在はクラウドの利活用が進み、開発環境や分析基盤をパブリッククラウドで運用するケースや、お客様によってはすべてのインフラをクラウドに移行するような場合もございます。いずれにせよ、現行のインフラ運用における最適解はオンプレ共存の「ハイブリッドクラウド」もしくは一歩進んでベンダロックインを避けるための「マルチクラウド」になります。しかしながら、オンプレにある環境をパブリッククラウドに移行する場合は適切なパブリッククラウドの選定だけでなく、パブリッククラウド上で既存インフラが稼働するかどうかの動作確認が事前に必要となります。その場合、一旦クラウドにシステムを移し替えるための準備や手間が必要となるため、運用者にとっての負荷増は否めません。その際、Veeamをお使いのお客様であれば「クラウドモビリティ」によりバックアップデータから直接パブリッククラウドにリストアすることが可能です。  ・Restore to Amazon EC2: バックアップをAmazon EC2に

Nutanixの回復力 – パート8 - RF3 & イレイジャーコーディング(EC-X)におけるノード障害時のリビルド性能

本記事は2018年6月19日に Josh Odgers 氏が投稿した記事の翻訳版です。原文はこちら。本シリーズの牽引はこちら。 RF2についてはパート1で、RF3についてはパート3で説明したように、ADSFの回復力を議論する際の重要な要素は、ドライブやノードに障害が発生した場合に、設定されたレジリエンシーファクターに準拠した状態に回復する速度です。 それでは、第1回と第3回の内容を簡単に振り返ってから、RF3とイレイジャーコーディング(EC-X)を使用した場合のノード障害に対するADSFのパフォーマンスの例を見てみましょう。 リビルド処理は、設定されているレジリエンシーファクターやEC-Xなどのデータ削減にかかわらず、すべてのノードとドライブに完全に分散された処理(多対多の処理)であるため、非常に高速であると同時に、ノードごとの作業負荷が最小限に抑えられるため、ボトルネックを回避し、稼働中のワークロードへの影響を軽減することができます。 リビルドの性能は、クラスターの規模、ドライブの数や種類(NVMe、SATA-SSD、DAS-SATAなど)、さらにはCPUの世代やネットワークの接続性など、さまざまな要因に左右されることを忘れてはいけませんが、それを踏まえた上で、以下のハードウェアを使った例を紹介します。 テスト環境は15ノードのクラスターで、Ivy Bridge 2560プロセッサ(2013年第3四半期発売)を搭載したNX-6050およびNX-3050ノードなど、約5年前のハードウェアが混在しており、各ノードにはサイズの異なる6つのSATA-SSDと2つの10GbEネットワークインターフェースが搭載されています。 イレイジャーコーディングはRF2やRF3よりも多くの計算オーバーヘッドを必要とするため、より高速なプロセッサを使用することでリビルド速度に大きな差が出ます。レジリエンシーファクターは単にレプリカをコピーするだけです(つまり、パリティの計算は必要ありません)。 今回のテストでは、クラスターをRF3とイレイジャーコーディングで構成しました。 これまでのテストと同様に、IPMIインターフェースを使用し、以下のように「Power off server - immediate」オプションを使用してノード障害をシミュレートします。これは、物理的なサーバーの背面から電

Badges

Show all badges